

使用说明书 碰撞检测专用三轴 MEMS 加速度传感器 SSF-MEMS-XYZ-CAN-V1

SSFTech V1.0.0

支 o.,LTD

未经天津三石峰的同意,不得复制和使用本手册天津三石峰保留所有权利,

版本信息

版本号	修改内容	备注
V1.0	建立	

三石峰科技 San Shi Feng Tech co.,LTD

目录

版本	·信息	1
一、	功能概述	3
	1.1 设备简介	3
	1.2 参数规格	9
二、	硬件说明	9
	2.1 接口定义	9
	2.2 安装位置	10
三、	软件说明	11
	3.1 测试软件	11
	3.2 CAN 通信指令格式	11
	3.3 振动数据格式与转换	12
	3.4 参数配置工具	12
四、	使用方法	14
	使用方法:	14
五、	测试报告	16

一、功能概述

1.1 设备简介

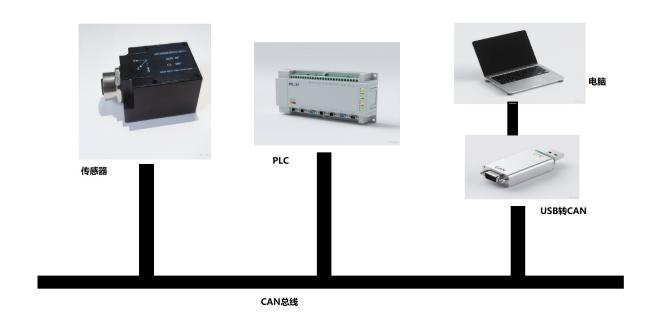


图 1 产品功能框架图

该产品专门为碰撞检测开发,适用于机床刀具碰撞检测、机械臂、导轨异物碰撞、 传送带、装配线、等领域。

机床为典型应用场景:

1、金属切削加工:避免刀具与工件/夹具的刚性碰撞

铣削加工(立式/卧式铣床、加工中心)

场景 1: 粗铣阶段的"吃刀过量"碰撞

当刀具(如面铣刀、立铣刀)切入毛坯时,若程序设定的切削深度/进给速度过大,或工件材质存在硬点(如铸件砂眼、锻件氧化皮),会导致切削阻力骤增,刀具产生高频、高幅值振动。传感器可捕捉到振动频谱的突变(如 1000Hz 以上高频成分激增),触发机床立即降速或停机,避免刀具崩刃、主轴过载。

例:在模具钢粗铣时,若刀具突然撞上工件内的预埋螺母,振动加速度从正常的 5g 飙升至 30g 以上,系统 0.1 秒内停机,减少刀具损耗。

- 三石峰 -

场景 2: 轮廓加工中的"过切"碰撞

加工复杂曲面(如叶轮、叶片)时,若刀具半径补偿错误、编程坐标系偏移,或工件装夹松动导致位置偏移,刀具可能与工件非加工面(如台阶、凸台)发生剐蹭或刚性碰撞。传感器通过振动波形的"尖峰脉冲"识别碰撞,联动数控系统(如 Fanuc、Siemens)执行"回退"动作,避免工件报废。

车削加工(车床、车削中心)

场景:细长轴加工的"甩动碰撞"

车削长径比>10 的细长轴时,工件在离心力作用下易产生"甩动",若刀具进给量过大,可能与工件振动的最大幅值处碰撞(如工件中间挠度最大位置)。传感器安装于刀架上,监测径向振动变化,当振幅超过阈值(如 0.5mm 对应的加速度),自动降低主轴转速并启用跟刀架,防止刀具崩裂或工件弯曲。

2、刀具与夹具 / 机床部件的碰撞

(1) 换刀过程中的误碰撞

加工中心自动换刀时,若刀库定位误差、主轴拉刀力不足导致刀具脱落,或刀具长度/直径参数设置错误(如实际刀具比程序设定长 5mm),刀具可能与工作台、夹具或工件碰撞。传感器安装于主轴箱或刀库附近,捕捉换刀瞬间的异常振动(如换刀速度 200mm/s 时的冲击振动),立即停止换刀动作并报警,避免主轴损坏。

例:立式加工中心换刀时,若刀柄未完全卡入主轴,旋转瞬间会产生径向振动,传感器可在 0.5 秒内触发急停,防止刀具甩出。

(2) 夹具干涉碰撞

多工位夹具或组合夹具在切换工位时,若定位销磨损、气动夹紧力不足导致夹具偏移,刀具可能与夹具侧面碰撞。传感器安装于刀具刀柄或主轴前端,通过监测切削方向外的"横向振动"(如正常切削振动为轴向,碰撞时出现径向分量)识别干涉,停机后提示检查夹具位置。

3、特殊加工场景的碰撞防护

(1) 深孔加工的"排屑不畅"碰撞

深孔钻削(孔深>5 倍直径)时,若排屑槽堵塞导致切屑堆积,刀具会因阻力骤增与孔底或孔壁碰撞,产生高频振动。传感器结合主轴负载数据,当振动幅值超过基准值2 倍且持续 0.3 秒以上,判定为排屑故障,自动暂停加工并启动退刀排屑程序,避免钻头折断在孔内。

(2) 高速加工的"共振诱发"碰撞

高速铣削(主轴转速>10000rpm)时,若刀具固有频率与机床结构共振,会引发剧烈振动,可能导致刀具与工件"高频撞击"。传感器实时监测振动频率,当接近共振频率(如通过前期模态分析确定的 1500Hz)时,自动调整主轴转速避开共振点,或降低进给速度以减小振动能量。

(3) 异形工件的"非预期接触"

加工铸件、锻件等毛坯形状不规则的工件时,若三维建模与实际毛坯存在偏差(如铸造余量不均),刀具可能提前接触工件非加工区域。传感器通过振动信号的"突发性"(无渐进式增长)识别此类碰撞,结合机床坐标系记录碰撞位置,便于后续修正加工程序。

其他应用场景包括:

1、重型装备与工程机械

(1) 起重机与港口机械

用于检测吊臂或缆绳的异常振动,防止吊装过程中与障碍物(如建筑物、其他设备)碰撞。例如,当传感器监测到吊臂振动频率突变时,可触发警报并限制吊臂运动范围。 此外,港口龙门吊的行走机构若发生轨道偏移或异物卡阻,振动信号可快速识别并停机 保护。

(2) 挖掘机与矿用车辆

在挖掘机铲斗作业时,传感器可实时监测挖掘阻力变化,当遇到地下管线或坚硬岩石导致异常振动时,立即停止动作以避免机械损伤。矿用卡车的悬挂系统若发生部件松动或碰撞,振动数据可提前预警潜在故障。

2、自动化物流与仓储

(1) AGV (自动导引车) 与穿梭车

安装于 AGV 底盘或货叉上的传感器,可检测行驶过程中因地面不平、障碍物撞击或路径偏移引起的振动突变。例如,当 AGV 与货架发生轻微碰撞时,传感器触发紧急制动并调整导航路径,避免货物倾倒或设备损坏。

(2) 立体仓库堆垛机

监测堆垛机在高速升降或水平移动时的振动状态,防止货叉与货架立柱碰撞。结合激光测距传感器,可实现多维度碰撞防护。

3、交通运输与车辆安全

(1) 商用车与特种车辆

用于检测车辆悬挂系统、传动轴或轮胎的异常振动,识别因碰撞导致的部件松动。 例如,渣土车在行驶中若轮胎与路肩碰撞,传感器可通过振动频谱分析判断损伤程度, 并提示驾驶员检查。

(2) 轨道交通与铁路设备

安装于列车转向架或轨道旁,监测车轮与轨道的异常接触振动,识别因轨道变形、 异物侵入或车轮磨损导致的碰撞风险。例如,高铁的受电弓若与接触网发生异常摩擦, 振动信号可触发降速或断电保护。

4、能源与基础设施

(1) 海上风电与光伏电站

海上光伏管桩若被船舶或漂浮物撞击,传感器可通过振动幅值突变快速定位碰撞位置,并联动监控系统发出警报。风力发电机的叶片若因结冰或异物撞击产生异常振动,

传感器数据可用于预测叶片断裂风险。

(2) 石油化工设备

监测反应釜、压力容器的振动状态,识别因内部压力突变或机械故障导致的结构碰撞。例如,压缩机轴承松动引发的振动异常可提前预警,避免设备连锁损坏。

5、智能机器人与协作系统

(1) 协作机器人

内置传感器可实时检测机械臂与操作人员或周边设备的接触力变化。例如,当工人 误触正在作业的机械臂时,振动信号触发快速制动,确保人机协作安全。部分协作机器 人通过融合振动数据与力传感器信息,实现 0.1 秒级响应的防碰撞保护。

(2) 服务机器人与移动平台

清洁机器人在狭窄通道中行驶时,传感器可通过振动特征识别与墙壁或家具的轻微碰撞,调整路径避免反复摩擦损伤设备。

6、安防与周界防护

(1) 周界入侵检测系统

安装于围栏或隔离网上的传感器,可识别攀爬、切割等入侵行为引发的振动。例如, 监狱或变电站的防护网若遭受破坏,传感器通过振动频谱分析区分自然振动(如风雨) 与人为破坏,实现精准报警。

(2) 仓储与物流安全

用于检测货架因货物超载或结构变形导致的振动异常,预防货架坍塌引发的连锁碰 撞事故。例如,智能仓储系统通过振动数据动态调整货物堆放策略。

7、高端制造与精密设备

(1) 半导体晶圆加工设备

在光刻机、刻蚀机等精密设备中,传感器监测运动部件(如工作台、机械臂)的振

动稳定性,防止因微小碰撞导致的加工精度损失。例如,当晶圆传输机械臂发生抖动时,振动信号可触发停机校准。

(2) 医疗器械与手术机器人

手术机器人的机械臂若与患者或手术器械发生意外接触,传感器通过振动幅值判断碰撞力度,自动调整动作幅度以避免组织损伤。此外,医疗设备运输过程中,传感器可监测冲击振动,确保精密仪器在搬运时不受损。

技术适配性分析

- 1. 设备核心功能:基于三轴 MEMS 技术,实现振动加速度监测、DO 报警输出 (24V)、双模式数据传输(报警模式/原始数据连续发送模式),支持通过 CAN2.0 标准帧通信,适用于设备状态监测、故障预警等。
- 2. 核心特点:
 - a) 支持 CAN2.0 标准帧通信;
 - b) 双模式切换:报警模式(超阈值触发 DO 报警及数据输出)、原始数据连续 发送模式(按采样率持续传输);
 - c) 内置 DO 报警输出(24V),可直接驱动外部告警设备(如指示灯、蜂鸣器)。

1.2 参数规格

硬件参数	参数说明
电源	+24V DC
功耗	≤0.5W
振动测量范围	±16g
频率响应范围	DC~6kHz (±3dB)
采样率	支持 533.34Hz、888.9Hz、1066.68Hz、2666.7Hz、2963Hz、5333.4Hz、13333.5Hz; - 原始数据连续发送模式最高支持 5333.4Hz; - 报警模式默认 13333.5Hz(可手动调整)
通信接口	CAN2.0 标准帧, 1Mbps
DO 报警输出	24V 电压输出,[负载能力,例如:最大 100mA]
工作温度	-25°C~+75°Cn Shi Feng Tech co.,LTD
防护等级	IP67
安装方式	磁吸、胶装、螺丝打孔
外形尺寸	42×30×21mm

二、硬件说明

2.1 接口定义

- 三石峰 -

接口名称	标识	功能说明
DO_OUT	Pin1	DO 报警输出(24V,超阈值时触发)
VCC	Pin2	电源正极 24V
GND	Pin3	电源负极
CAN_H	Pin4	CAN 总线高电平
CAN_L	Pin5	CAN 总线低电平

2.2 安装位置

建议安装于设备振动敏感部位,确保 X/Y/Z 轴与监测方向一致(附图说明安装方向)。

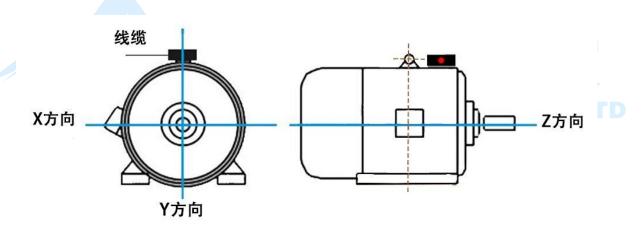


图 2 建议安装位置和方向(红色圆圈处为线孔位置)

三、软件说明

3.1 测试软件

3.1.1 模式切换逻辑

模式组合	工作状态	数据输出规则	DO 报警触发
报警模式开启 + 原始数据连续发送 开启	监测振动阈值,输 出前后 1s 数据	超阈值时,输出报警前后 1s 数据(采样率>5333.4Hz 时,按5333.4Hz 速率输出前1s 数据)	触发(24V 输出)
报警模式关闭 + 原始数据连续发送 开启	仅持续传输数据	按设置的采样率 (≤5333.4Hz)连续发 送原始数据	不触发
报警模式开启 + 原始数据连续发送 开启	持续传输 + 阈值监测	按设置的采样率 (≤5333.4Hz)连续发 送数据	超阈值时触发(24V 输出)

3.1.2 模式切换指令

通过 CAN 指令切换模式(指令格式见 3.2),默认模式为报警模式关闭 + 原始数据关闭。

3.2 CAN 通信指令格式

帧 ID	数据字节(8字节)	功能说明
001	01 01 7F 7F 7F 7F 7F 7F	关闭报警模式
001	01 02 XH XL YH YL ZH ZL	开启报警模式,*H 和*L 为*轴的阈值高 8 位和低 8 位

- 三石峰 -

001	01 03 00 00 00 00 00 00	开启原始数据连续发送
001	01 04 00 00 00 00 00 00	关闭原始数据连续发送
001	01 05 00 0x 00 00 00 00	设置采样率
		0x = 00 :533.34Hz
		0x = 01 :888.9Hz
		0x= 02 :1066.68Hz
		0x= 03 :1333.35Hz
		0x= 04 :2666.7Hz
		0x= 05 :2963Hz
		0x = 06:5333.4Hz
		0x = 07 : 8889Hz
		0x= 08 :13333.5Hz

3.3 振动数据格式与转换

3.3.1 原始数据输出格式

振动加速度数据以 2 字节 16 进制形式传输(X/Y/Z 轴分别对应 CAN 帧不同的字节),单位为 g(浮点数)。

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
00	00	X 加速度 (MSB)	X 加速 度 (LSB)	Y 加速度 (MSB)	Y 加速 度 (LSB)	Z 加速度 (MSB)	Z加速 度 (LSB)

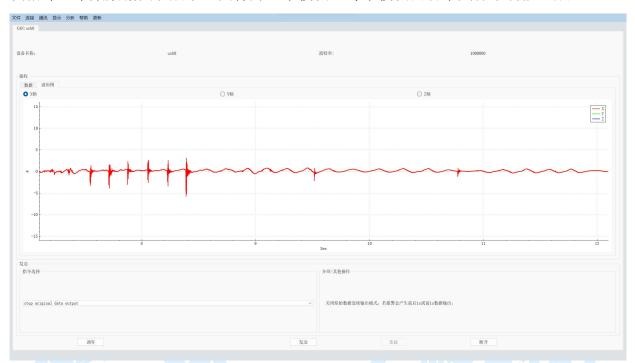
3.3.2 16 进制转 float 公式

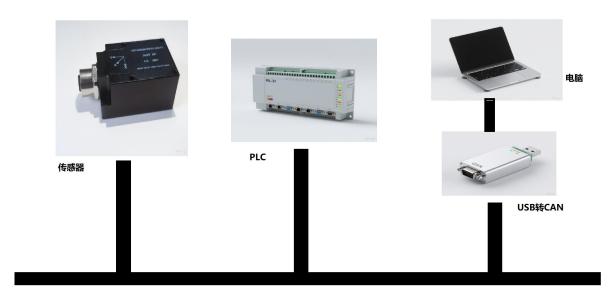
$$a = \frac{\left((MSB << 8 + LSB) - 32768 \right)}{65536} \times 32(g)$$

3.4 参数配置工具

推荐使用 MEMS_CAN_ssf, 支持通过 CAN 转 USB 模块连接电脑,可视化配置模式、阈值、采样率等参数(附软件下载地址及操作步骤)。

上位机软件下载地址: https://www.sange-cbm.com/。打开 MEMS 上位机软件,可以查看信号特征、实时波形。主界面如图 3 所示,系统整划分为接口配置、数据采集、下发指令、采集数据图表展示、固件升 5 个模块,每个模块由若干具体子功能组成。




图 3 软件页面展示

详细内容可以参考《三石峰温振一体加速度传感器配置及采集软件使用说明.pdf》。

四、使用方法

总体框图如下所示:

CAN总线

4.1 MEMS 直连

图 4 整体使用框图

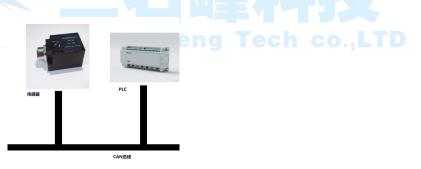


图 5 与 PLC 点对点连接

图 6 通过 USB 转 CAN 连接电脑

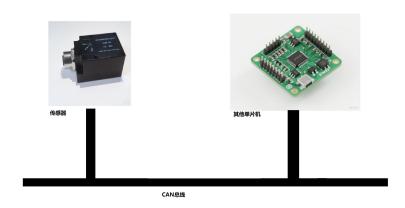


图 7 与其他电路连接

五、测试报告

天津市三石峰科技有限公司									
产品名称	* 品名称 MEMS 三轴振动传感 型号 MEMS_CAN_DO								
	器								
测试数量	1台		阶段	正样机阶段					
测试人员	丁茂涵		日期	2025/8/4					

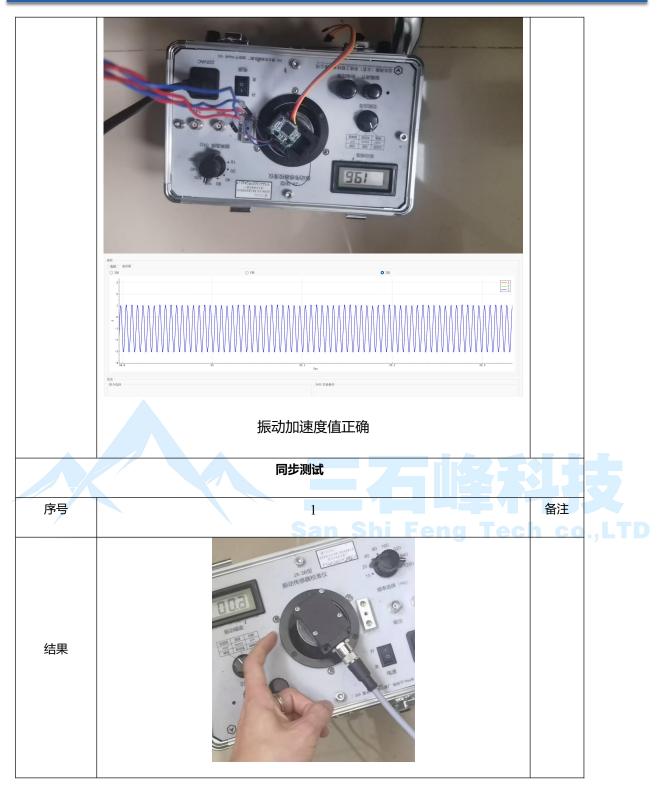
SSF-VIB-M12 测试报告

功能项	测试操作	测试操作 测试工具 测试次 判		判定标准	判定结	备注
	1、反复插拔设备电源					
	2、连接电源,看设备			1、2:设备正常工		
电源接口	是否工作正常。	\	20	作	通过	
	3、反接电源看设备是			3、设备不损坏		4-6
	否正常					
	1、幅值测试	配套软	n Sh	Feng To	ech (:0.,L
振动信号		件,振动	9	符合范围	通过	
	2、同步测试	台				
	1、 模式转换测试					
模式配置	2、 改变采样率测试	配套软件	10	设备工作正常	通过	
				1。、升级后按照升		
固件升级	1、升级固件	配套软件	2	级的程序执行	通过	
		 设条付	 	 		
~HVO		ζШΙ				

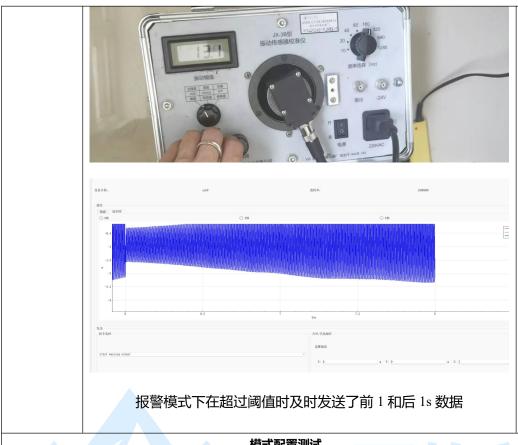
天津市三石峰科技有限公司

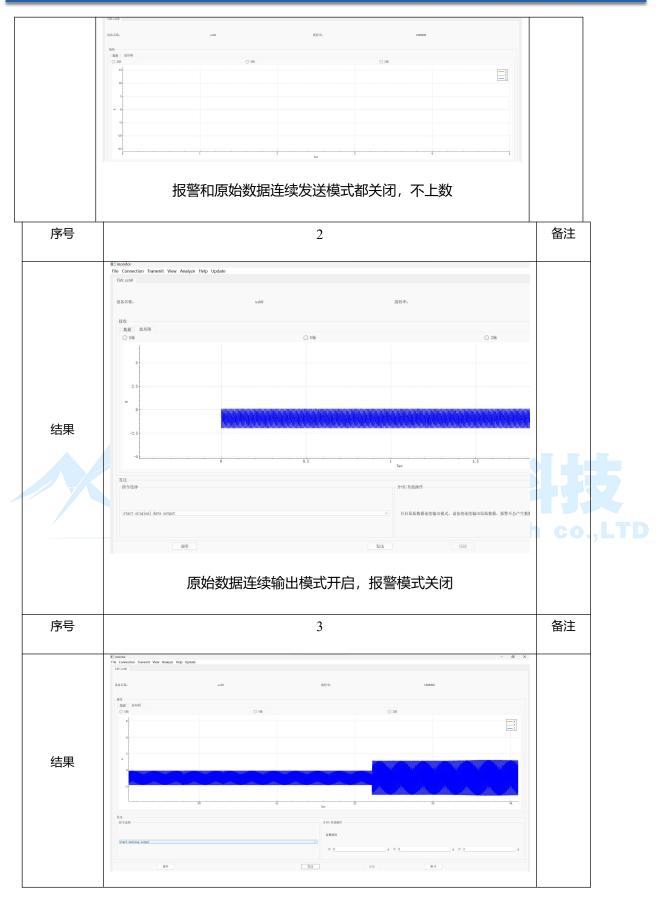
二白峰

产品名称	MEMS 三轴 振动传感器		型 号	MEMS_CA N_DO			
测试数量	1台		阶段	正样机阶段			
测试人员	丁茂涵		日期	2025/8/4			
			电源测试	l			
序号			1			备注	
结果				正接仍然正常	工作		,LTD
序号			2			备注	
结果	10 125 125 125 125 125 125 125 125 125 125	○ 192	5c 11 15c 11 15	0 2M			
			幅值测试				


- 三石峰 -

二白峰





模式配置测试

序号 备注 1 0 结果

报警模式开启,原始数据连续输出关闭,阈值 Z 轴设为 3g,输出 24V

设备名称:

Liby
数据 读形图

State

Type

T

报警模式开启,原始数据连续输出开启,阈值 Z 轴设为 3g,则发送原始数据

固件升级测试

序号 1 备注

三石峰

结果

